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Lecture No. 14 

Two Dimensional Basis Functions Quadrilaterals 

Let’s assume that we can define a rectangular “unit” element as follows: 

 

 

 

 

 

 

 

• Lagrangian basis Functions have 𝐶𝐶𝑜𝑜 Functional Continuity. 

One way to generate 2-D basis functions is to take the product of two 1-D basis functions, one 

written for each coordinate direction. This approach can be applied for linear, quadratic and 

cubic Lagrange and for Hermite cubic. 
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• Linear Lagrange (Bi-Linear Lagrange Quadrilateral) 
Let’s apply the described procedure to develop a linear Lagrange 

    2-D element. 
 

    For 1-D 𝜙𝜙1(𝜉𝜉) = 1
2

(1 − 𝜉𝜉) 

   𝜙𝜙2(𝜉𝜉) = 1
2

(1 + 𝜉𝜉)  

 
   In the second direction we will have 

   𝜙𝜙1(𝜂𝜂) = 1
2

(1 − 𝜂𝜂)  

   𝜙𝜙2(𝜂𝜂) = 1
2

(1 + 𝜂𝜂)  

Let’s now take the products of these 4 functions to find the 2-D functions: 

𝜙𝜙1(𝜉𝜉, 𝜂𝜂) =
1
2

(1 − 𝜉𝜉)
1
2

(1 − 𝜂𝜂) 

𝜙𝜙2(𝜉𝜉, 𝜂𝜂) =
1
2

(1 + 𝜉𝜉)
1
2

(1 − 𝜂𝜂) 

𝜙𝜙3(𝜉𝜉, 𝜂𝜂) =
1
2

(1 + 𝜉𝜉)
1
2

(1 + 𝜂𝜂) 

𝜙𝜙4(𝜉𝜉, 𝜂𝜂) =
1
2

(1 − 𝜉𝜉)
1
2

(1 + 𝜂𝜂) 
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Therefore we have 4 functions. These correspond to 4 nodes which are located at the corners. 

𝜙𝜙1 = 1@(−1,−1) and zero at all other corners 

𝜙𝜙2 = 1@(1,−1) and zero at all other corners 

𝜙𝜙3 = 1@(1,1) and zero at all other corners 

𝜙𝜙4 = 1@(−1,1) and zero at all other corners 

 

Consider: 

𝜙𝜙1(𝜉𝜉, 𝜂𝜂) =
1
4

(1 − 𝜂𝜂 − 𝜉𝜉 + 𝜂𝜂𝜉𝜉) 

 

 

 

 

 

 

 



C E  6 0 1 3 0  F I N I T E  E L E M E N T  M E T H O D S -  L E C T U R E  1 4       P a g e  4 | 17 
 

The variation along the element sides is linear. However within the element, the variation is 

not purely linear due to the cross term 𝜉𝜉𝜂𝜂 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



C E  6 0 1 3 0  F I N I T E  E L E M E N T  M E T H O D S -  L E C T U R E  1 4       P a g e  5 | 17 
 

• Inter-element continuity at any point along any side has been assured due to the fact that the 

functional variation in the adjacent element has been defined in the same way and with the 

same coefficients. 

𝑢𝑢� = 𝜙𝜙𝑢𝑢(𝑛𝑛) = 𝜙𝜙1𝑢𝑢1
(𝑛𝑛) + 𝜙𝜙2𝑢𝑢2

(𝑛𝑛) + 𝜙𝜙3𝑢𝑢3
(𝑛𝑛) + 𝜙𝜙4𝑢𝑢4

(𝑛𝑛) 

 

 

 

 

 

 

•  

Variation along side only:   Variation along side only: 

𝑢𝑢�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛1

𝑛𝑛1 − 𝑛𝑛2
= 𝜙𝜙2𝑢𝑢2

(𝑛𝑛1) + 𝜙𝜙3𝑢𝑢3
(𝑛𝑛1)   𝑢𝑢�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛2

𝑛𝑛1 − 𝑛𝑛2
= 𝜙𝜙1𝑢𝑢1

(𝑛𝑛2) + 𝜙𝜙4𝑢𝑢4
(𝑛𝑛2) 
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However due to functional continuity constraint 

𝑢𝑢2
(𝑛𝑛1) = 𝑢𝑢1

(𝑛𝑛2) 

𝑢𝑢3
(𝑛𝑛1) = 𝑢𝑢4

(𝑛𝑛2) 

Thus in general 

𝑢𝑢�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛1

𝑛𝑛1 − 𝑛𝑛2
= 𝑢𝑢�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛2

𝑛𝑛1 − 𝑛𝑛2
 

Therefore the variation along the entire side is the same for both elements. 

• Note that the general variation along all boundaries and within the element is given by 

 𝑢𝑢�(𝑛𝑛) = 𝜙𝜙𝑢𝑢(𝑛𝑛). The formulae given above are simply simplified down for the given side. 

• Thus functional continuity is assured along all inter-element boundaries due to definition of 

the interpolating functions as well as the assurance that the nodal constants (i.e. 𝑢𝑢𝑠𝑠
(𝑛𝑛)) are 

forced equal for shared nodes. 
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Quadratic Lagrange (Bi-quadratic Lagrange Quadrilateral) 

For 1-D elements in 𝜉𝜉-direction 

𝜙𝜙1(𝜉𝜉) = 𝜉𝜉(𝜉𝜉 − 1)/2 

𝜙𝜙2(𝜉𝜉) = 1 − 𝜉𝜉2 

𝜙𝜙3(𝜉𝜉) = 𝜉𝜉(1 + 𝜉𝜉)/2 

Thus in the η-direction we define: 

𝜙𝜙1(η) = η(η − 1)/2 

𝜙𝜙2(η) = 1 − η2 

𝜙𝜙3(η) = η(1 + η)/2 

• Now we take the product of these functions. 

This yields 9 functions which are associated with 9 nodes. 

8 functions for side nodes. These equal unity at one side node and zero at all other nodes. 
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4 corner nodes: 

𝜙𝜙𝑠𝑠 =
1
4 ξξ𝑠𝑠

(1 + ξξ𝑠𝑠)ηη𝑠𝑠(1 + ηη𝑠𝑠)𝑖𝑖 = 1,4 

4 mid-side nodes: 

ξ𝑠𝑠+4 = 0     𝜙𝜙𝑠𝑠+4 =
1
2 ηη𝑠𝑠+4

(1 + ηη𝑠𝑠+4)(1 − ξ2)     𝑖𝑖 = 1,2 

η𝑠𝑠+6 = 0     𝜙𝜙𝑠𝑠+6 =
1
2 ηη𝑠𝑠+6

(1 + ηη𝑠𝑠+6)(1 − η2)     𝑖𝑖 = 1,2 

The 9th function is defined at the center point (0,0): 

𝜙𝜙9 = (1 − ξ2)(1 − η2) 
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This function equals unity at the center point (0,0) and zero at all side nodes. 

 

 

 

 

 

 

 

• Thus each interpolating function is defined to be zero at all nodes except for one, where it will 

equal unity. 

• We now have a quadratic variation along the sides. Therefore full functional continuity 

between inter-element boundaries is assured. 

• We have up to 4th order terms in the interior of the element. 
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Cubic Lagrange (Bi-cubic Lagrange Quadrilateral) 

1-D element has 4 interpolating functions and 4 associated nodes 

  

    −1      −1
3
          + 1

3
       +1 

2-D element will have 16 interpolating functions and 16 nodes 

 

             Ԅ 

     

 

                ξ 

 

 

 

Cubic variation along element sides. 

6th order polynomial within the element interior. 
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Formal Derivation of Interpolating Polynomials for Quadrilateral Elements 

Steps: 

1. Define the general form of the interpolating polynomial (e.g. bi-linear, bi-quadratic, etc.) and 

the location of the nodes. It is very useful to utilize Pascal’s Triangle in this definition process. 

 

Pascal’s Triangle: Provides a simple pattern for characterizing complete polynomials for 

quadrilateral elements and associating the requisite nodal points with the element. 

             

k               bi-quadratic 

0 

1 

2 

3 

4 

5 
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i. Multiply each row by x and y to get the terms in the next row 

ii. vertices define nodes for a given quadrilateral 

iii. generic interpolating polynomial for a given element involves all terms included within the 

defined quadrilateral. 

Thus Pascal’s triangle defines both the terms in the function in addition to the nodes 

involved. 

2.  Set constraints and solve. 

 If the nodes are defined as �ξ𝑗𝑗 , η𝑗𝑗�     𝑗𝑗 = 1,𝑁𝑁 

 we set the constraints: 

𝜙𝜙𝑠𝑠(ξ𝑠𝑠 ,η𝑠𝑠) = 1.0
𝜙𝜙𝑠𝑠(ξ𝑠𝑠 , η𝑠𝑠) = 0.0     𝑖𝑖 ≠ 𝑗𝑗     𝑗𝑗 = 1,𝑁𝑁� 𝑖𝑖 = 1,𝑁𝑁 

 Thus we must solve for 𝑁𝑁 𝑁𝑁 x 𝑁𝑁 systems of equations. 
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Example: Bi-linear element 

Step 1 

 Define the general form of the interpolating polynomial: 

𝜙𝜙𝑠𝑠 = 𝑎𝑎𝑠𝑠 + 𝑏𝑏𝑠𝑠ξ + 𝑐𝑐𝑠𝑠η + 𝑑𝑑𝑠𝑠ξη 

 define nodes: 𝑁𝑁 = 4 

 

�ξ𝑗𝑗 , η𝑗𝑗� = (−1,−1) 

           (−1, +1) 

           (+1,−1) 

           (+1, +1) 

Step 2 

 Set constraints and set up 𝑖𝑖 = 1,𝑁𝑁 systems of equations: 

𝜙𝜙𝑠𝑠 = �ξ𝑗𝑗 ,η𝑗𝑗� = �1.0     1 = 𝑗𝑗
0.0     𝑖𝑖 ≠ 𝑗𝑗  

 Now solve the systems of 4 equations. 
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• We obtain same 𝜙𝜙 as we got multiplying the 1-D functions together. This procedure is 

however more general. It really is the same process as was used in 1-D cases, except that we 

use Pascal’s triangle to help define the nodes and form of the interpolating functions. 

We note that the interior nodes defined for Lagrangian basis are not necessary for achieving 

inter-element functional continuity. 

Let’s develop interpolating basis which do not use interior nodes. 
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Serendipity Basis Functions 

• Bi-linear Lagrange Quadrilateral has no interior nodes and therefore we can not simplify this 

element 

• Simplify Bi-quadratic Lagrange Quadrilateral by defining a set of 2-D bases that are quadratic 

along each side yet have no center node. 

 

For a complete quadratic 2-D element, the form of the general inerpolating function is (using 

Pascal’s triangle): 

𝜙𝜙𝑠𝑠 = 𝑎𝑎𝑠𝑠 + 𝑏𝑏𝑠𝑠𝜉𝜉 + 𝑐𝑐𝑠𝑠𝜂𝜂 + 𝑑𝑑𝑠𝑠𝜉𝜉2 + 𝑒𝑒𝑠𝑠𝜂𝜂2 + 𝑓𝑓𝑠𝑠𝜉𝜉𝜂𝜂 + 𝑔𝑔𝑠𝑠𝜉𝜉2𝜂𝜂 + ℎ𝑠𝑠𝜉𝜉𝜂𝜂2 + 𝑝𝑝𝑠𝑠𝜉𝜉2𝜂𝜂2 

Thus there are 9 coefficients and hence we require 9 constraints to derive an equation 𝜙𝜙𝑠𝑠 for 

each node i. This would lead us to the bi-quadratic element we established before. 

Let’s drop the last term in the expression for 𝜙𝜙𝑠𝑠 (i.e. set 𝑝𝑝𝑠𝑠 ≡ 0). We are left with a polynomial 

with 8 coeffcients. Therefore we must also eliminate a node and we delete the interior node. 

𝜙𝜙𝑠𝑠 = 𝑎𝑎𝑠𝑠 + 𝑏𝑏𝑠𝑠𝜉𝜉 + 𝑐𝑐𝑠𝑠𝜂𝜂 + 𝑑𝑑𝑠𝑠𝜉𝜉2 + 𝑒𝑒𝑠𝑠𝜂𝜂2 + 𝑓𝑓𝑠𝑠𝜉𝜉𝜂𝜂 + 𝑔𝑔𝑠𝑠𝜉𝜉2𝜂𝜂 + ℎ𝑠𝑠𝜉𝜉𝜂𝜂2 

 

 



C E  6 0 1 3 0  F I N I T E  E L E M E N T  M E T H O D S -  L E C T U R E  1 4       P a g e  16 | 17 
 

• Develop 8 functions by for each function: 

i. Setting 𝜙𝜙𝑠𝑠 = 1 at the given node 

ii. Setting 𝜙𝜙𝑠𝑠 = 0 

We can then derive the following interpolating functions: 

 at corner nodes:  1
4

(1 + 𝜉𝜉𝜉𝜉𝑠𝑠)(1 + 𝜂𝜂𝜂𝜂𝑠𝑠)(𝜉𝜉𝜉𝜉𝑠𝑠 + 𝜂𝜂𝜂𝜂𝑠𝑠 − 1) 

 at side nodes 𝜉𝜉𝑠𝑠 = 0 1
2

(1 − 𝜉𝜉2)(1 + 𝜂𝜂𝜂𝜂𝑠𝑠) 

 at side nodes 𝜂𝜂𝑠𝑠 = 0 1
2

(1 + 𝜉𝜉𝜉𝜉𝑠𝑠)(1 − 𝜂𝜂2) 

There are no interior nodes: 

This element now has: 

• Quadratic variation along the sides (with full continuity of the function along inter-element 

boudnaries) 

• Cubic variation on the interior (vs. Quintic for the corresponding Bi-quadratic Lagrange 

element) 

However for the C-D equation, the use of the serendipity element results in a substantial 
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loss in accuracy as compared to the bi-quadratic Lagrange basis. The increased economy 

which results due to 1 less node is not justified due to this severe degradation in accuracy. 


